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• RF Drive system 
• Revised power distribution network 

 

• Muon – RF Phase determination 
• There is no pre-ordained correlation in MICE between muon arrival and RF 

phase 

 
• Muon ‘beam’ is extremely tenuous 

• Particles can be measured individually 

 
• Particle transit time determined by ToF detectors- used in difference 

measurements 
• ToF resolution ~50ps 
• Time is not directly referenced to external clock 
• Closest ToF is ~2.5m upstream of 1st cavity 

 
• Cavity transit time inferred by the ToF transit time and the tracker 

measurement of momentum 
• Tracker resolution, pz ~ 200MeV/c  is Dpz ~+/-1.3MeV/c 
• For 2.5m gap transit delay is ~9.6ns +/- 60ps 
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Introduction 



RF network 
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• 2nd  amplifier moved to 3rd position 
behind wall to ease installation in 
congested area 

• With 2 RF amplifiers now relatively 
straightforward to place auxiliary 
systems (cooling) 

• Water cooling for load will need to 
route over the air gap on the 
transmission lines 

• Load on each splitter to absorb unbalanced reflections 
• Retracted crane hook clears coax over the wall. 
• Support from present ‘shield wall’ and yoke 



• RF Drive system 
• Revised power distribution network 

 

• Muon – RF Phase determination 
• There is no pre-ordained correlation in MICE between muon arrival and RF 

phase 

 
• Muon ‘beam’ is extremely tenuous 

• Particles can be measured individually 

 
• Particle transit time determined by ToF detectors- used in difference 

measurements 
• ToF resolution ~50ps 
• Time is not directly referenced to external clock 
• Closest ToF is ~2.5m upstream of 1st cavity 

 
• Cavity transit time inferred by the ToF transit time and the tracker 

measurement of momentum 
• Tracker resolution, pz ~ 200MeV/c  is Dpz ~+/-1.3MeV/c 
• For 2.5m gap transit delay is ~9.6ns +/- 60ps 
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Introduction 



• Ionisation cooling is a function of the particle energy 
• The cooling effect is therefore expected to be a function of the acceleration each particle 

experienced 
 

• Need to be able to select particles for analysis by their RF transit phase 
• Allows the ‘bundling’ of particles for coherent analysis 
• i.e. As if we are considering the interactions of a real particle ‘bunch’ 

 
• Particle transit time determined by ToF detectors- used in difference measurements 

• ToF resolution ~50ps 
• Time is not directly referenced to external clock 
• Closest ToF is ~2.5m upstream of 1st cavity 

 
• Cavity transit time inferred by the ToF transit time and the tracker measurement of 

momentum 
• Tracker resolution, pz ~ 200MeV/c  is Dpz ~+/-1.3MeV/c 
• For 2.5m gap transit delay is ~9.6ns +/- 70ps 
• Combining ToF resolution and Momentum projection resolution ~  +/- 86ps 
• Desire to know RF phase to better than 0.3 of this ~ 20ps – 30 ps 
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Requirement 



Overview of Timing Critical Elements 
• Sketch illustrates relationships of key components 

 
• Two Approaches 

• Digitisation (subsampled) of the RF waveform on the pickup probes 
• TDC recording of the RF waveform of the reference oscillator 
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Digitiser subsampling principle  

• We know with quite high precision 
the form of the accelerating field in 
time 
• 201.25MHz (5kHz width) 
• Do not need to satisfy Nyquist 

on the signal, only on the 
bandpass signal 
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V 
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• Now being tested on the cavity 
pickup signals from the MTA 

f/Hz 

DSP processed- fill ‘empty’ spectrum 



Demonstration of subsample approach 
• MTA signals from cavity pickup are ~500ms duration and 201.25MHz (5kHz width) 

• Envelope shown below, Sampled at 5 GSa/sec (Multi MB files- take minutes to save) 
• MICE will be ~ 5 times worse 

• Note- edge ripple is noise and digitiser resolution and precision 
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Demonstration of subsample approach 

• Subsampling at 25MSa/sec and Fourier Transforming yields 200 times less data ~10’s kB 
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Demonstration of subsample approach 

• Reconstructing signal in Fourier domain and comparing signals (Blue is Raw, Red is DSP) 
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• Note suppression of DC bias 
• Note DSP has effective filtered the signal 
• Suppressing noise and instrument artefacts 

• Zero crossing offsets 
      between Raw and DSP? 
 
       Range from 10-75 ps 
 
       Not good enough 



Demonstration of subsample approach 

• Reconstructing signal in Fourier domain and comparing signals (Blue is Raw, Red is DSP) 
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• Note suppression of DC bias 
• Note DSP has effective filtered the signal 
• Suppressing noise and instrument artefacts 

• Zero crossing offsets 
      between Raw and DSP? 
 
       Range from 10-75 ps 
 
       Not good enough! 



Demonstration of subsample approach 

• Problem is not so much with the DSP approach but the digitiser precision and wideband 
noise in the raw signal- so filter the raw signal 
 

• Butterworth Filter with flat 2MHz passband at 201.25MHz 
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Demonstration of subsample approach 

• Reconstructing by DSP gives high fidelity to filtered raw signal- filter completely 
suppresses the DC offset (blue is Raw, Red is DSP) 
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• Phase offset appears to be a systematic 
function of (sub) sample rate  

• Random variation ~1ps 



Subsample approach 

• Appears to work, gives reproduction of filtered real cavity signals from MTA tests 
 

• Can be implemented using VME instruments closely related to our CAEN TDC’s 
 

• Need to be able to synchronise timebases with TDC’s- at least fix t=0. 
• t=0 can be defined by an external trigger to zero all timebases 
• This could be done just before accelerating gradient reaches maximum 
OR 
• Just before start of RF pulse 
• Use a pulse generator to provide 40MHz clock, and provide trigger by logical AND 

between clock and trigger pulse- should sync start of timebases 
 

• CAEN V1761 have external clock drive for acquisition rate 
• 10 bit rather than 8 bit units currently recording MTA data 
• Facilitate interfacing with 40MHz clocks of TDC’s (requires programming of the clock 

controller) 
• Need to understand trigger jitter statement? 
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TDC approach 

• This will use the TDC (CAEN 1290) currently used to record the ToF’s 
 

• RF signal driving discriminators, use TDC time stamps to find cavity ‘zero crossings’ 
• 25 ps bin size 

 
• Same electronics enhances confidence that any drift in time accuracy will be similar 

• Unfortunately LeCroy discriminators seem problematic at 200MHz 
• Input impedance wanders with frequency, at 201.25MHz, 98+j68W 

• Could be matched with L-branch network, but still doesn’t fix rate problem 
 

• Ordered two alternative discriminators 
• LeCroy 4608C and LeCroy 2340B 
• Both claim rates well in excess of the present system and have conventional RF input 

ports 
 

• Discussing requirements with other instrument makers 
• Phillips Scientific and FAST ComTek, 200MHz and 1GHz units respectively 
• Also discussing alternative approach 

• ToF’s need CFD’s due to variable signals. RF signal has very precise amplitude 
• Really just need threshold detectors- much simpler devices 
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Absolute Calibration 

• Providing we can correlate the ToF to the RF with a random variation of <25ps we will not  
upset the time resolution from the ToF and Trackers 
 

• However both measurements have a number of unknown systematic delays 
 

• It is probably possible to figure these out with high fidelity for the RF system- not clear 
that all the particle detector systematics can be completely known 
 

• Simple MAUS simulations inject particles at defined entrance time- study effect of 
entrance time on the change of particle momentum and energy 
 

• Compare to estimates of the tracker resolution and hence infer potential calibration of 
phase 
• Simulation set up: Input Momentum: 228MeV/c, RF Gradient 10.2MV/m 

Input Emittance 6mm, No. of spills: 200 
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Axial Energy/Momentum Variation 
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• Assume the trackers to have  a pz 
resolution of about+/- 1.4 MeV/c  
 

• Estimate ~ +/- 135ps uncertainty in 
absolute phase (+/- 2.7% of the cycle,  

      ~ +/- 10o) 
 

• Emittance reduction flat over this range 



Summary 

• New RF distribution network planned 
• Overhead rather than underfloor 
• Eases installation interference and timeframes 

 
• Fourier domain reconstruction of signals appears to offer real reduction in data density 

and reproduces suitably filtered input signals well 
• Need to test filtration in undersampled spectral domain rather than at high rate  

 
• Require to build system to sync triggers of ToF TDC’s and digitisers 

 
• Alternative discriminators/threshold detectors required to drive TDC’s for TDC approach 

• Instruments awaiting delivery and enquiries to manufacturers 
 

• Simulations indicate likely absolute calibration precision to be ~+/- 130ps 
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